- By Dr. Aditi Jain (Twitter handle:@AditiJain1987)
New Delhi, December 3: Antibiotic resistance is a major problem in the health sector globally. Many times bacteria form biofilms to resist the action of antibiotics. They do so by adhering together to form a matrix with the help of polymer which they produce. Such microbial films are responsible for failure of devices such as catheters and ventilators.
Researchers at Indian Institute of Technology, Roorkee (IIT-Roorkee) have developed a new eco-friendly nanocomposite that promises to help fight the problem of such antibiotic resistance more effectively. The newly synthesized nanocomposite is capable of penetrating these biofilms and kill microbes.
The new compound has beendeveloped by combining silver particles with ĸ-Carrageenan, a polymer derived from red sea weed. The polymer is conventionally used in food products as a gelling, thickening and emulsifying agent.
Silver nanoparticles are already known to have the ability to kill microbes but they are instable and have a short shelf life. Researchers used ĸ-Carrageenan to increase stability and shelf life of silver nanoparticles. They made a solution of ĸ-Carrageenan with silver nitrate and irradiated it in a microwave synthesizer. The nanocomposite thus obtained was found tobe very stable and having a long shelf life, while being effective against both Gram-positive and Gram-negative bacteria.
“Capping of silvernanocomposites with ĸ-carrageenan impartsit stability and shelf life up to six 6months, which is one of the essential features of therapeutic formulations. The nanocompositeshows excellent antimicrobial activity against S.aureus and P.aeruginosa bacterial biofilms,” researchers said. Ascarrageenan has been widely studied for its antifungal, anti-viral, anti-cancerous andimmunomodulatory properties, the nanocomposite based on it can have huge potential inbiomedical applications.
The new nanocomposite also has potential applications in food packaging industry as microbial films spoil food products. “We are currently devising cost-effective anti-bacterial wound dressing materials and food packaging materials using the new nanocomposite. We plan to study its efficacy as potent anti-fungal and anti-viral agents too,” said Dr.Krishna Mohan Poluri, a member of the research team, while speaking to India Science Wire.
Theresearch results have been published in journal Carbohydrate Polymers. Besides Dr. Krishna Mohan Poluri, the team included ApoorvaGoel, Mukesh Kumar Meher, Payal Gupta,Khushboo Gulati andVikasPruthi. (India Science Wire)
Picture: Dr. Krishna Mohan Poluri (Standing) and Mukesh Kumar Meher